کاربرد شبکه عصبی مبتنی بر الگوریتم ژنتیک در پیش بینی تقاضای بلندمدت انرژی

Authors

حسین صادقی

حسین سهرابی وفا

فاطمه نوری

abstract

پیش­بینی تقاضای انرژی جهت عرضه به موقع، تنظیم بازار، هدفگذاری میزان صادرات و ایجاد امنیت انرژی اهمیت ویژه­ای دارد. روش­های مختلفی برای پیش­بینی تقاضای انرژی معرفی شده است که در این بین با توجه به روند غیرخطی و پرنوسان تقاضای انرژی، تکنیک­های غیرخطی نتایج مطلوب­تری داشته است. شبکه­های عصبی و الگوریتم ژنتیک از مهمترین و پرکاربردترین تکنیک­های غیرخطی در این زمینه می­باشند که هر یک نقاط ضعف و قوت خاصی دارند. در این مطالعه با ترکیب شبکه عصبی و الگوریتم ژنتیک، نقایص مذکور مرتفع شده و با الگوریتم ترکیبی معرفی شده به پیش­بینی تقاضای انرژی در ایران پرداخته شده است. نتایج مطالعه در پیش­بینی تقاضای انرژی طی سال­های 1346 تا 1390 نشان دهنده قدرت پیش­بینی بالاتر تکنیک ترکیبی در کنار قدرت توضیح­دهندگی متغیرهای توضیحی بکار رفته است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی تقاضای بلندمدت انرژی الکتریکی با استفاده از الگوریتم ترکیبیِ عصبی- فازی و انبوه ذرات

  Storing the electrical energy in large scale is impossible. So, it is necessary to identify the factors affecting the electricity demand. Researchers have used different methods to forecast the future demand of electricity, among them intelligent methods and fuzzy based methods are more popular. Since ANFIS structure is based on researcher’s experience about phenomenon, the created structure ...

full text

پیش بینی تقاضای بلندمدت انرژی الکتریکی با استفاده از الگوریتم ترکیبیِ عصبی- فازی و انبوه ذرات

  با توجه به عدم امکان ذخیره انرژی­الکتریکی ، شناسایی عوامل­موثر بر تقاضای این حامل انرژی و پیش­بینی دقیق روند آتی آن، ضرورت دارد . تاکنون روش­های مختلفی در این زمینه مورد استفاده قرار گرفته است که در میان آن­ها روش­های هوشمند و به­ویژه روش­های فازی، دارای قابلیت­های بیشتری هستند. در مطالعه حاضر از سیستم ­ استنتاج عصبی- فازی ترکیب شده با الگوریتم انبوه­ذرات ( PSO  -ANFIS ) استفاده شده و پس ازشب...

full text

پیش بینی تقاضای انرژی با استفاده از شبکه عصبی مبتنی بر الگوریتم انبوه ذرات

انرژی نقش اساسی در فرایند تولید و رفاه اجتماعی داشته و پیش بینی تقاضای آن به منظور تنظیم بازار و عرضه مطمئن آن امری ضروری می باشد. با توجه به روند پرنوسان و غیرخطی تقاضای انرژی و متغیرهای موثر بر آن، مدل های غیرخطی بخصوص شبکه-های عصبی و الگوریتم انبوه ذرات در این امر توفیق بیشتری داشته اند. با توجه به اینکه در کنار نقاط قوت فراوان، این تکنیک ها دارای نقاط ضعفی مانند نیاز به تعیین فرم تبعی خاص، ...

full text

ترکیب شبکه های عصبی و الگوریتم های تکاملی در پیش بینی تقاضای انرژی

پیش­بینی روند تقاضای انرژی جهت اتخاذ سیاست­های مقتضی و مناسب اهمیت فراوانی دارد. به دلیل روند پرنوسان و غیر خطی تقاضای انرژی و متغیرهای موثر بر آن قابلیت روش­های هوشمند و غیر خطی به خصوص شبکه­های عصبی و الگوریتم­های تکاملی به منظور پیش­بینی تقاضای انرژی در مطالعات مختلف به اثبات رسیده است. با وجود نقاط قوت فراوان، این تکنیک­ها با مسائل مهمی همچون تحمیل فرم تبعی خاص- در الگوریتم­های تکاملی- یا ن...

full text

کاربرد الگوریتم انبوه ذرات و الگوریتم ژنتیک در شبیه سازی و پیش بینی تقاضای انرژی

مدیریت تقاضای انرژی از اهمیت فراوانی در برنامه ریزی و تامین امنیت اقتصادی کشورها برخوردار است. شناسایی عوامل موثر بر روند تقاضای انرژی کشور و پیش بینی مصرف آتی آن می تواند به سیاست گذاران و فعالان در بازار انرژی در جهت تصمیم گیری های اقتصادی و بهبود عملکرد بازار و تامین امنیت سوخت کشور کمک کند. امروزه روش های نوینی برای مدل سازی و پیش بینی پدیده های مختلف ابداع گشته است که در میان این روش ها ال...

full text

My Resources

Save resource for easier access later


Journal title:
فصلنامه علمی پژوهشی نظریه های کاربردی اقتصاد

Publisher: دانشگاه تبریز

ISSN 2423-6578

volume 1

issue 2 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023